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Appendix	A:	A	Multi‐Asset	NREE	Model	

In	 this	 appendix,	 we	 present	 the	 solution	 to	 a	 plain‐vanilla	 NREE	 model	 with	 two	 risky	 stocks	
(Grossman,	1976;	Hellwig,	1980;	Admati,	1985).	Our	aim	is	to	show	how	the	empirical	predictions	
regarding	price	and	liquidity	spillovers	naturally	arise	in	a	standard	model	of	cross‐asset	learning.	
The	model	is	a	simplified	version	of	Admati	(1985).	

Setup:	 Trading	 takes	 place	 at	ݐ ൌ 0	and	 payoffs	 are	 realized	 at	ݐ ൌ 1.	 There	 is	 a	 riskless	 asset	 in	
infinitely	elastic	supply	with	a	gross	return	normalized	to	one	and	there	are	two	risky	stocks	that	pay	
off	

൬
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Here,	̅ߠ	is	the	expected	payoff	of	a	given	stock,	ߪఏ
ଶ	is	the	variance	of	the	payoff,	and	ߩ ∈ ሾെ1,1ሿ	is	the	

correlation	between	the	payoffs	of	the	two	stocks.	

There	 is	a	unit‐mass	of	 investors	with	CARA	utility	that	maximize	the	expected	utility	of	terminal	
wealth.	Investors	are	assumed	to	have	the	same	risk	tolerance	ߛ  0.	Each	investor	݅	receives	a	pair	
of	signals	about	the	two	stocks:	
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Signal	 errors	 are	 assumed	 to	 be	 independent	 across	 investors.	 Thus,	 investors	 have	 dispersed	
information	and	try	to	learn	about	other	investors’	signals	from	the	equilibrium	prices.	To	prevent	
prices	from	being	fully	revealing,	the	asset	supply	of	the	two	stocks	is	assumed	to	be	random:	

	ቀ
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An	 equilibrium	 is	 obtained	 when	 (1)	 investors	 choose	 optimal	 demands	 given	 their	 beliefs	
conditional	 on	 their	 respective	 information	 sets	ሼݏଵ, ,ଶݏ ,ଵ 	and	ଶሽ (2)	markets	 clear	 given	 these	
optimal	demands.		

Matrix	notation:	For	notational	convenience,	the	model	solution	is	given	in	matrix	notation.	Let	ࣂ	
denote	 the	 vector	 of	 payoff	 realizations,	ࣂഥ	be	 the	 vector	 of	 expected	 payoffs,	ࢿ 	be	 the	 vector	 of	
investor	݅’s	signal	errors,	ࢠ	be	the	vector	of	realized	stock	supplies,	and	ࢠത	be	the	vector	of	average	
(expected)	stock	supplies.	Let	the	variance‐covariance	matrixes	of	,ࣂ	ࢿ,	and	ࢠ	be	given	by	,ࢂ	ࡿ,	and	
	Let	respectively.	,ࢁ ൌ ሺଵ 	the	define	to	useful	is	it	Finally,	prices.	equilibrium	of	vector	the	be	ଶሻᇱ
matrix	ࡽ ≡ 		.ଵିࡿߛ

Theorem	(Admati,	1985):	There	exists	a	unique	linear	rational	expectations	equilibrium	price	of	the	
form	 ൌ   ࣂ െ 	where	ࢠ

 ൌ ଵିࢂߛሺߛ  ࡽଵିࢁࡽߛ  ഥࣂଵିࢂሻିଵሺࡽ  	,	തሻࢠଵିࢁࡽ

 ൌ ሺିࢂߛଵ  ࡽଵିࢁࡽߛ  ࡽሻିଵሺࡽ  	,	ሻࡽଵିࢁࡽߛ

 ൌ ሺିࢂߛଵ  ࡽଵିࢁࡽߛ  ࡵሻିଵሺࡽ  	.	ଵሻିࢁࡽߛ

Proof:	See	Admati	(1985).	 	
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Matrix		plays	an	important	role	for	the	arguments	to	follow	as	it	governs	how	the	equilibrium	prices	
respond	to	changes	in	asset	supplies—like	from	a	fire	sale—and	thus	captures	price	impact—i.e.,	the	
sensitivity	of	the	price	to	a	(hypothetical)	trade	of	one	share.	Given	the	structure	imposed	on	,ࢂ	ࢁ	
and	ࡽ,	we	can	apply	simple	matrix	algebra	to	derive	

 ൌ ቂ
ܿଵଵ ܿଵଶ
ܿଶଵ ܿଶଶ

ቃ	,	

ܿଵଵ ൌ
1
ܿ̅
ቆ1 

ଶߛ

௭ଵߪ
ଶ ఌଶߪ

ቇ ቆ
ଶߛ

௭ଶߪ
ଶ ఌସߪ


1

ఌଶߪ


1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ	 ,	

ܿଵଶ ൌ
ߩ

ఏߪ̅ܿ
ଶሺ1 െ ଶሻߩ

ቆ1 
ଶߛ

௭ଶߪ
ଶ ఌଶߪ

ቇ	,	

ܿଶଵ ൌ
ߩ

ఏߪ̅ܿ
ଶሺ1 െ ଶሻߩ

ቆ1 
ଶߛ

௭ଵߪ
ଶ ఌଶߪ

ቇ	,	

ܿଶଶ ൌ
1
ܿ̅
ቆ1 

ଶߛ

௭ଶߪ
ଶ ఌଶߪ

ቇ ቆ
ଶߛ

௭ଵߪ
ଶ ఌସߪ


1

ఌଶߪ


1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ	 ,	

with			ܿ̅ ൌ ߛ ቆ
ଶߛ

௭ଵߪ
ଶ ఌସߪ


1

ఌଶߪ


1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ ቆ
ଶߛ

௭ଶߪ
ଶ ఌସߪ


1

ఌଶߪ


1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ െ
ߛଶߩ

ఏߪ
ସሺ1 െ ଶሻଶߩ

	.	

The	following	corollary	follows	immediately:	

Corollary:	Given	the	structure	imposed	on	,ࢂ	ࢁ	and	ࡽ,	all	elements	of	matrix	C	are	strictly	positive	
and	 ܿ	is	increasing	in	ߪ௭

ଶ 	for	݆ ∈ ሼ1,2ሽ.	

Note	 that	 this	 corollary	 depends	 on	 the	 assumptions	 that	 asset	 supplies	 and	 signal	 errors	 are	
assumed	to	be	independent	across	stocks.	Admati	(1985)	shows	that,	when	these	assumptions	and	
especially	the	one	about	independent	supplies	do	not	hold,	counterintuitive	results	are	possible.	We	
feel,	however,	that	these	assumptions	are	intuitively	justified	as	a	large	body	of	empirical	evidence	
shows	that	uninformed	(noise)	trading	is	associated	with	idiosyncratic	volatility	(e.g.,	Brandt	et	al.,	
2010;	Foucault	et	al.,	2011)—suggesting	that	asset	supply	shocks	are	not	much	correlated.	We	also	
emphasize	 that	 these	 assumptions	are	 shared	with	 a	 large	bulk	of	 the	 theoretical	 literature	 (e.g.,	
Veldkamp,	2006;	Cespa	and	Foucault,	2014).	

Fire	sales:	A	fire	sale	can	be	thought	of	as	having	two	distinct	effects	in	our	model.	First	and	foremost,	
a	fire	sale	can	be	interpreted	as	a	sudden	increase	in	the	asset	supply	realization	of	one	stock.	Second,	
a	fire	sale	may	also	indirectly	affect	equilibrium	by	increasing	the	perceived	uncertainty	about	asset	
supply	shocks.		

Intuitively,	an	increase	in	ߪ௭
ଶ ,	the	variance	of	supply	shocks,	reduces	the	signal‐to‐noise	ratio	of	stock	

݆’s	price	signal,	and	thereby	reduces	the	price	informativeness	of	the	fire	sale	stock.	To	see	this	in	our	
model,	note	 that	 the	variance	of	 the	price	 signal	depends	on	 the	variance	of	 the	 term	ሺ ܿ ܾሻݖ⁄ ,	
which	can	be	shown	to	be	increasing	in	ߪ௭

ଶ .	In	the	context	of	our	model,	the	increase	in	ߪ௭
ଶ 	can	be	

rationalized	by	noting	that	fire	sales	can	be	understood	as	a	sequence	of	serially	correlated	noise	
shocks.	An	extreme	noise	realization	in	one	period	will	then	cause	market	makers	to	update	their	
expectations	about	noise	trader	risk	in	future	periods.	There	are	at	least	two	other	channels—outside	
of	our	model—for	why	price	informativeness	may	decrease	during	a	fire	sale.	First,	when	market	
makers	are	uncertain	whether	informed	traders	are	present,	unexpected	trading	activity	(as	from	a	
fire	sale)	may	cause	them	to	update	this	probability,	leading	them	to	demand	a	higher	price	impact	
(e.g.,	Easley	and	O’Hara,	1992;	Avery	and	Zemsky,	1998;	Banerjee	and	Green,	2015),	which	reduces	
price	 informativeness.	 Second,	 fire	 sale	 shocks	may	 hurt	 informed	 arbitrageurs,	 causing	 them	 to	
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trade	less	aggressively	in	the	fire	sale	stock	and	thereby	rendering	it	 less	informationally‐efficient	
(Dow	and	Han,	2016).	

For	illustrational	purposes,	we	now	assume	that	stock	2	has	the	fire	sale	(ݖଶ	and	ߪ௭ଶ
ଶ 	go	up)	and	that	

stock	1	is	a	close	economic	peer	of	stock	2	(i.e.,	ߩ  0).	We	establish	two	distinct	empirical	predictions	
that	follow	from	these	assumptions.	

Price	 spillover	 effect:	 The	 price	 spillover	 effect	 follows	 from	 the	 increase	ݖଶ .	 Formally,	 such	 an	
increase	in	stock	2’s	asset	supply	causes	a	price	drop	in	both	the	fire	sale	stock	and	its	economic	peer:	

ଶ߲
ଶݖ߲

ൌ െܿଶଶ ൏ 0
ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
"୧୰ୣ	ୱୟ୪ୣ	୮୰୧ୡୣ	ୣୣୡ୲"

				and		
ଵ߲
ଶݖ߲

ൌ െܿଵଶ ൏ 0
ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

"୮୰୧ୡୣ	ୱ୮୧୪୪୭୴ୣ୰	ୣୣୡ୲"

		

Intuitively,	the	most	direct	consequence	of	the	increase	in	ݖଶ	is	a	drop	in	stock	2’s	price,	which	occurs	
for	two	reasons.	First,	since	investors	are	risk‐averse,	stock	2	must	offer	them	a	bigger	discount	in	
order	for	them	to	hold	more	of	it.	Second,	since	a	given	investor	is	unable	to	disentangle	the	supply	
shock	from	low	demand	by	the	other	investors,	which	he	would	attribute	to	them	having	received	
low	signal	realizations,	he	downgrades	his	expectations	about	ߠଶ	and	thus	demands	less	itself.	The	
price	of	stock	2	must	then	fall	further	for	the	market	to	clear.	

The	drop	in	stock	2’s	price	caused	by	the	fire	sale	should	then	spill	over	to	stock	1.	This	is	due	to	a	
simple	learning	effect:	since	the	two	stock	payoffs	are	positively	correlated,	investors	view	the	drop	
in	stock	2’s	price	as	bad	news	about	stock	1,	leading	them	to	curb	back	their	demand	in	response.	
Thus,	for	the	market	to	clear,	stock	1’s	price	has	to	fall	as	well.	

Finally,	note	that	these	price	effects,	being	caused	by	a	temporary	supply	shock,	should	revert	over	
time.	In	our	static	model,	this	reversal	occurs	instantaneously	when	payoffs	are	realized	at	ݐ ൌ 1.		

	

Liquidity	spillover:	The	 liquidity	spillover	effect	comes	from	the	 increase	 in	ߪ௭ଶ
ଶ 	and	says	that	the	

peer	of	a	fire	sale	stock	suffers	from	lower	liquidity	as	a	result	of	the	fire	sale:	

߲

௭ଶߪ߲
ଶ ൬െ
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߲ܿଵଵ
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ଶ  0
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The	(negative	of	the)	partial	derivative	of	the	equilibrium	price	with	respect	to	its	own	asset	supply	
measures	how	much	the	price	changes	in	response	to	selling	(buying)	one	additional	share.	In	the	
model,	this	derivative	equals	െ ܿ	for	݆ ∈ ሼ1,2ሽ	and	thus	 ܿ	can	be	interpreted	as	a	measure	of	stock	
݆’s	liquidity	(akin	to	Kyle’s	lambda).	

The	expression	derived	above	 for	 ܿ	does	not	depend	on	ݖ	and	so	 there	 is	no	direct	effect	of	 the	
change	in	stock	2’s	asset	supply	on	its	own	liquidity	or	the	liquidity	of	its	peer.	However,	under	the	
assumption	that	there	is	also	an	increase	in	ߪ௭ଶ

ଶ ,	we	expect	the	liquidity	of	stock	1	to	decrease.1	The	
intuition	 for	 this	 is	as	 follows:	by	 increasing	the	uncertainty	about	stock	2’s	supply,	 the	 fire	sales	
reduces	the	informativeness	of	stock	2’s	price	(see	above).	Since	this	price	serves	as	a	signal	for	stock	

                                                 

1 Whether or not the liquidity of the fire sale stock 2 should also deteriorate is unclear and depends on the model assumptions. In Admati (1985), 
an increase in ߪ௭ଶ

ଶ  actually increases liquidity, as it makes each investor less concerned about trading with other better-informed investors (much 
like in Kyle, 1985). In Cespa and Foucault (2014), this adverse-selection channel is shut down by assuming that each stock has its own specialized 
market makers who all know the same. An increase in the variance of supply shocks then decreases liquidity, as risk-averse investors become more 
reluctant to take on additional inventory.   



4 

1,	investors	become	less	certain	about	ߠଵ	and	thus	more	reluctant	to	accommodate	supply	shocks	in	
stock	1.	In	other	words,	stock	1	becomes	less	liquid.		

	

Cross‐asset	hedging:	One	alternative	explanation	for	a	price	spillover	effect	comes	from	the	hedging	
activity	of	liquidity‐providing	arbitrageurs.	In	a	stock	market	with	price	pressure,	the	fire	sale	causes	
a	temporary	price	drop	in	stock	2	which	attracts	liquidity‐providing	arbitrageurs.	These	arbitrageurs	
want	to	hedge	their	increased	exposure	in	stock	2	by	selling	stock	1,	which	causes	stock	1’s	price	to	
fall	as	well.	Hence,	even	in	the	absence	of	asymmetric	 information,	a	simple	story	based	on	cross‐
asset	hedging	by	liquidity	providers	can	explain	a	price	spillover	from	stock	2	to	stock	1.		

This	can	be	seen	 in	 the	model:	when	 investors’	private	signals	become	completely	uninformative	
ఌଶߪ) → ∞),	ܿଵଶ	converges	to	ߪߩఏ

ଶ/ߛ,	which	is	positive.	Thus,	an	increase	in	ݖଶ	still	causes	a	drop	in	ଵ.	
However,	 the	 model	 also	 shows	 that	 a	 story	 based	 on	 cross‐asset	 hedging	 cannot	 explain	 the	
existence	 of	 a	 liquidity	 spillover	 effect.	 Indeed,	 when	ߪఌଶ → ∞,	 ܿଵଵ 	converges	 to	ߪఏ

ଶ/ߛ ,	 which	 is	
independent	 of	ߪ௭ଶ

ଶ .	 Hence,	without	 information	 asymmetry,	 a	 larger	 uncertainty	 about	 stock	 2’s	
supply	should	not	affect	stock	1’s	liquidity.		
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Appendix	B:	Robustness	Checks	

B.1	Event	Study	Results	for	Fire	Sales	and	S&P	500	Index	Additions	

The	main	result	of	our	paper	is	that	fire	sales	spill	over	to	the	returns	of	peer	firms.	In	the	

paper,	we	show	this	in	a	panel	regression	setting,	which	we	argue	is	best	suited	to	isolate	the	

return	 evolution	 for	 a	 given	 event	 in	 the	 presence	 of	 event	 clustering	 (i.e.,	 the	 fact	 that	

sometimes	 fire	 sale	 events	 follow	 right	 after	 another).	 Here,	we	 show	 that	 our	 spillover	

results	 are	 robust	 to	 using	 a	 standard	 event	 study	 approach—only	 that	 the	 evolution	 of	

returns	is	“smoothed	out”	due	to	not	accounting	for	event	clustering.		

As	 in	 the	paper,	 our	 fire	 sale	 events	 comprise	 all	 permno‐quarter	 observations	 in	which	

mfflow	(the	Edmans	et	al.,	2012,	measure	of	mutual	funds’	selling	pressure)	is	in	the	bottom	

decile.	For	each	event,	we	obtain	the	(value‐weighted)	portfolio	of	the	ten	closest	peer	stocks	

(in	 terms	of	 the	TNIC	similarity	score).	We	calculate	abnormal	 returns	using	 the	market‐

model.	 Specifically,	 for	 each	 event,	 we	 estimate	 the	 intercept	 and	 β‐coefficient	 from	

regressing	returns	of	the	fire	sale	stock	and	the	corresponding	peer	portfolio	on	the	CRSP	

value‐weighted	market	 index	 over	 a	 five‐year	 period	 ending	 one	 year	 before	 the	 event‐

quarter	(e.g.,	for	quarters	t=‐24	to	t=‐5	where	t=0	marks	the	event).	We	work	with	monthly	

return	data	to	increase	the	precision	of	this	estimation:	

ఛݐ݁ݎ ൌ ߙ  ߚ ൈ ߬						for								ఛݐ݁ݎݐܴ݇݉ܲܵܥ ൌ ሾെ92,െ13ሿ	

where	߬	indicates	the	distance	in	number	of	months	from	the	event	quarter.		

In	the	event	period,	we	then	calculate	abnormal	returns	(ARs)	as	the	difference	of	realized	

returns	minus	the	expected	return	based	on	the	market‐model:	

௧ܴܣ ൌ ௧ݐ݁ݎ െ ሺߙపෝ  పߚ ൈ ݐ						for								௧ሻݐ݁ݎݐܴ݇݉ܲܵܥ ൌ ሾെ4,12ሿ	

For	each	event,	we	then	cumulate	abnormal	returns	(CARs)	during	the	event	period.	Figure	

B.1a	shows	the	evolution	of	average	CARs	in	event‐time—in	Panel	A	for	fire	sale	firms	and	

in	 Panel	 B	 for	 the	 corresponding	 peer	 portfolio.	 95%‐confidence	 intervals	 are	 based	 on	

standard	errors	clustered	by	event‐quarter.		
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We	also	show	event	study	results	 for	S&P	500	 index	additions	and	their	peers.	Since	this	

analysis	is	at	the	daily	frequency,	we	estimate	the	market‐model	using	daily	return	data	over	

the	period	[‐300,	‐50]	relative	to	the	effective	date	of	the	index	addition.	For	each	addition	

event,	we	again	focus	on	the	(value‐weighted)	portfolio	of	the	top	ten	peers	of	the	added	

stock.	

Figure	B.1b	depicts	the	results.	While	added	stocks	experience	a	strong	run‐up	in	returns	

over	the	days	preceding	the	effective	inclusion	(Panel	A),	there	is	no	significant	spillover	to	

peer	firms	(Panel	B).			
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Figure B.1a: Event study results for Fire Sale and Peer Firms 
This figure shows cumulative abnormal returns based on the market-model for fire sale firms (Panel A) and the (value-
weighted) portfolio of the top ten peer firms (Panel B) in event-time (where 0 is the quarter of the fire sale). The grey 
band around the cumulated returns represents the 95%-confidence interval based on standard errors clustered at the 
event-quarter level.  
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Figure B.1b: Event study results for S&P 500 Index Additions and Peer Firms 
This figure shows cumulative abnormal returns based on the market-model for firms added to the S&P 500 index 
(Panel A) and the (value-weighted) portfolio of the top ten peer firms (Panel B) in event-time (where 0 is the day when 
the addition becomes effective). The grey band around the cumulated returns represents the 95%-confidence interval 
based on standard errors clustered at the event-quarter level.  
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B.2	Different	Risk‐adjusted	Returns	

In	 this	 subsection,	we	 re‐run	our	baseline	 specification	 (1)	 for	 various	measures	of	 risk‐

adjusted	returns.	In	specification	1,	we	use	benchmark‐adjusted	returns	as	recommended	

by	Daniel	et	al.	(1997).	Specifically,	we	sort	stocks	into	one	of	twenty‐five	portfolios	based	

on	market	capitalization	and	book‐to‐market	quintiles	and	subtract	from	each	stock	return	

the	value‐weighted	average	return	of	its	corresponding	benchmark	portfolio.	In	specification	

2,	we	use	CAPM‐alphas.	In	specification	3,	we	use	Fama	and	French	(1993)	3‐factor	alphas.	

In	specification	4,	we	use	Carhart	(1997)	4‐factor	alphas.	In	specification	5,	we	use	Fama	and	

French	(2014)	5‐factor	alphas.	All	alphas	are	estimated	in	a	two‐step	approach.	In	the	first	

step,	we	run	the	corresponding	factor‐model	regressions	using	daily	return	data	in	a	rolling	

window	 covering	 the	 previous	 four	 quarters.	 Daily	 factor	 returns	 come	 from	 Kenneth	

French’s	website	and	the	AQR	data	 library	(for	the	Carhart	momentum	factor).	Following	

Levi	and	Welch	(2017),	we	shrink	the	resulting	factor	loadings	towards	their	cross‐sectional	

averages.	We	then	compound	daily	stock	and	factor	returns	at	the	quarterly	frequency	and	

calculate	alphas	as	

௧ߙ
ெ ൌ ௧ݐ݁ݎ െ ௧ࢼ

ெᇲ
௧ࢄ
ெ		,							

where	 superscript	ܯ ∈ ሼܯܲܣܥ, ,3ܨܨ ,ݐݎ݄ܽݎܽܥ 	denotes	5ሽܨܨ the	 factor	model	 and	ࢼ௧
ெ 	and	

௧ࢄ
ெ 	capture	 the	 corresponding	 vectors	 of	 estimated	 factor	 loadings	 and	 factor	 returns,	

respectively.		

Table	B.2	shows	the	results.	We	see	that,	regardless	of	the	risk‐adjustment	being	used,	we	

always	obtain	a	highly	significant	fire	sale	effect	of	about	‐6%	to	‐7%	that	partially	reverts	

over	 the	 subsequent	quarters.	We	also	 consistently	observe	a	 significant	 return	 spillover	

effect	onto	peer	firms	that	is	between	one‐quarter	and	one‐sixth	of	that	magnitude.	Although	

the	 cumulated	 return	 reversal	 coefficients	 for	 these	 return	 spillovers	 are	 not	 always	

statistically	 significant,	 they	 are	 economically	 sizable	 and	 indicate	 an	 almost	 complete	

reversal	of	returns.	Indeed,	when	we	test	whether	the	cumulated	peer	dummy	coefficients	
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in	the	window	[0,	+8]	are	significantly	different	from	zero,	we	are	always	far	from	rejecting	

the	hypothesis	that	there	was	a	complete	return	reversal	over	this	window	(i.e.,	t‐statistics	

for	these	tests	never	exceed	1;	results	available	upon	request).		

In	conclusion,	both	fire	sale	and	spillover	effects	are	robust	to	using	different	variants	of	risk‐

adjusted	returns.	
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Table B.2: Robustness Check for different Risk-adjusted Returns 
This table reports results from estimating equation (1) at the stock-quarter level. In specification 1, the dependent variable is the benchmark-adjusted return (Daniel et 
al., 1997). In specification 2, the dependent variable is the CAPM-alpha. In specification 3, the dependent variable is the Fama and French (1993) 3-factor alpha. In 
specification 4, the dependent variable is the Carhart (1997) 4-factor alpha. In specification 5, the dependent variable is the Fama and French (2014) 5-factor alpha. 
The main independent variables are FS and PEER dummies that flag fire sale events and peers for fire sale events, respectively. For example, the FS(t=4) dummy 
equals one when the given firm experienced a fire sale 4 quarters ago and the PEER(t=4) dummy equals one for all peer firms of a firm that experienced a fire sale 4 
quarters ago (and that did not themselves experience a fire sale in the previous or subsequent 8 quarters). All regressions include dummies from t=-16 to t=16; for 
brevity we only show the coefficients for t=-2 to t=8. Firm-level controls (logarithm of total assets, logarithm of leverage, investment grade dummy, speculative grade 
dummy, market-to-book ratio, return on assets, logarithm of number of analysts), ownership controls (mutual fund ownership, institutional ownership), mutual fund 
flow controls (separately for fire sale funds and others) and firm and quarter fixed effects are included in all specifications. All variables are defined in Appendix A. 
Standard errors are double-clustered at the firm and quarter level. t-statistics are reported below coefficient estimates in parentheses. At the bottom of the table, we 
report the sum of the FS and PEER dummy coefficients for windows [1, 4] and [1, 8], respectively, together with the corresponding t-statistic for the cumulated return 
reversal. *, **, *** indicate statistical significance at the 10%, 5%, and 1% levels.	
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Dep. variable: Benchmark-adj. return CAPM-alpha FF3-alpha Carhart-alpha FF5-alpha 
 (1) (2) (3) (4) (5) 
Event-time FS PEER FS PEER FS PEER FS PEER FS PEER 
t = -2 -0.001 -0.002 -0.002 -0.001 -0.000 -0.002 -0.001 -0.001 -0.001 -0.002 
 (-0.13) (-0.60) (-0.44) (-0.51) (-0.02) (-0.65) (-0.24) (-0.45) (-0.16) (-0.60) 
t = -1 -0.009** -0.004 -0.014** -0.004 -0.011** -0.004 -0.012*** -0.005 -0.009* -0.004 
 (-2.07) (-1.21) (-2.46) (-1.02) (-2.48) (-1.30) (-2.74) (-1.42) (-1.95) (-1.27) 
t = 0 -0.057*** -0.015*** -0.067*** -0.012*** -0.064*** -0.011*** -0.062*** -0.010*** -0.063*** -0.011*** 
 (-10.24) (-3.90) (-9.32) (-3.42) (-9.79) (-3.52) (-10.24) (-3.25) (-9.88) (-3.34) 
t = 1 0.002 0.006** 0.004 0.004 0.003 0.004* 0.002 0.004 0.002 0.003 
 (0.56) (2.26) (0.83) (1.66) (0.63) (1.70) (0.51) (1.50) (0.56) (1.42) 
t = 2 0.005 0.001 0.010* 0.002 0.009* 0.001 0.009* 0.000 0.009* 0.000 
 (1.34) (0.46) (1.86) (0.54) (1.90) (0.25) (1.81) (0.06) (1.90) (0.00) 
t = 3 0.006 0.003 0.013* 0.001 0.009 0.002 0.010 0.001 0.009* 0.002 
 (1.14) (0.75) (1.76) (0.32) (1.49) (0.58) (1.63) (0.17) (1.70) (0.59) 
t = 4 0.007 0.006* 0.002 0.006* 0.003 0.005* 0.004 0.005* 0.002 0.003 
 (1.64) (1.68) (0.46) (1.92) (0.71) (1.78) (0.95) (1.99) (0.48) (1.37) 
t = 5 -0.004 -0.002 -0.004 -0.002 -0.001 -0.003 0.000 -0.003 -0.001 -0.003 
 (-1.40) (-0.49) (-0.90) (-0.73) (-0.36) (-0.86) (0.09) (-1.00) (-0.17) (-0.92) 
t = 6 0.002 -0.000 0.002 -0.001 0.000 -0.001 0.001 -0.001 -0.000 -0.001 
 (0.40) (-0.04) (0.63) (-0.34) (0.18) (-0.30) (0.50) (-0.28) (-0.04) (-0.33) 
t = 7 0.006 -0.001 0.006 0.002 0.004 0.002 0.004 0.002 0.002 0.003 
 (1.13) (-0.32) (1.07) (0.77) (0.98) (0.86) (0.92) (0.83) (0.49) (1.23) 
t = 8 -0.004 0.000 -0.002 0.001 -0.001 0.001 -0.000 -0.001 -0.002 0.000 
 (-0.88) (0.12) (-0.40) (0.22) (-0.25) (0.31) (-0.01) (-0.50) (-0.50) (0.11) 
N 298,921 302,082 302,082 302,082 302,082 
adj. R2 0.033 0.081 0.046 0.037 0.045
Firm & quart. f.e. Yes Yes Yes Yes Yes 
Firm controls Yes Yes Yes Yes Yes 
Ownership controls Yes Yes Yes Yes Yes 
Flow controls Yes Yes Yes Yes Yes 
Reversal [1, 4] 0.020** 0.016** 0.029** 0.013* 0.024** 0.011* 0.025** 0.009 0.022** 0.009 
 (2.12) (2.61) (2.42) (1.92) (2.23) (1.89) (2.38) (1.62) (2.28) (1.45) 
Reversal [1, 8] 0.019 0.013* 0.031** 0.012 0.027** 0.010 0.031** 0.006 0.021* 0.008 
 (1.54) (1.75) (2.07) (1.48) (2.03) (1.54) (2.45) (0.98) (1.75) (1.23) 
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B.3	Fire	Sales	and	Abnormal	Short	Interest	

Huang	 et	 al.	 (2016)	 show	 that	 distressed	mutual	 funds	do	 not	 sell	 stocks	 at	 random.	To	

immunize	us	against	this	selection	concern,	we	follow	Edmans	et	al.	(2012)	and	define	fire	

sales	based	on	hypothetical	sells,	imputed	by	assuming	that	funds	accommodate	outflows	by	

downscaling	 their	 portfolio	 positions	 proportionally.	 In	 this	 subsection,	 we	 offer	 a	 first	

assessment	of	whether	this	methodology	is	indeed	able	to	solve	the	endogeneity	problem	

identified	in	Huang	et	al.	(2016).			

Specifically,	Huang	et	al.	 (2016)	show	that	 fire	sale	stocks	with	an	abnormally	high	short	

interest	see	a	substantially	stronger	return	drop	and	no	return	reversal	compared	to	fire	sale	

stocks	with	low	abnormal	short	interest.	This	suggests	that	mutual	fund	managers,	like	short	

sellers,	are	able	to	identify	stocks	that	underperform	ex	post	and	that	they	sell	these	stocks	

first	when	they	have	to	accommodate	outflows.	Here,	we	check	whether	the	Edmans	et	al.	

(2012)	approach	is	able	to	solve	the	selection	concern	with	respect	to	this	observed	selection	

variable:	the	abnormal	short	interest.2			

For	a	fair	comparison,	we	compute	abnormal	short	interest	exactly	as	described	in	Huang	et	

al.	 (2016):	 we	 run	 a	 regression	 of	 the	 short	 interest	 ratio	 on	 dummy	 variables	 flagging	

different	stock	size,	book‐to‐market,	and	past	return	(over	the	previous	4	quarters)	terciles	

as	well	as	industry	fixed	effects	defined	using	2‐digit	SIC	codes,	and	define	abnormal	short	

interest	as	the	residual	of	this	regression.	We	then	sort	our	fire	sale	events	into	two	groups	

based	on	this	abnormal	short	interest	and	we	repeat	our	panel	regression	specification	(1)	

with	separate	event‐time	dummies	for	both	groups	of	fire	sale	stocks	(peer	dummies	are	not	

                                                 

2 Of course, it is impossible to test the validity of the Edmans et al. (2012) approach for other, unobserved variables upon which mutual fund 
managers select the stocks to sell. In that sense, the ability to withstand selection—like the exclusion restriction of an instrument—is ultimately 
untestable.   
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included	 in	 this	 regression).	 Figure	 B.3	 shows	 the	 results	 for	 the	 specification	 without	

controls.	We	see	that,	with	fire	sales	identified	based	on	the	Edmans	et	al.	(2012)	approach,	

the	abnormal	short	interest	has	no	predictive	power	as	the	cumulated	return	for	fire	sales	

with	 low‐	 or	 high‐abnormal	 short	 interest	 look	 very	 similar.	 Table	B.3	 confirms	 that	 the	

inclusion	of	firm‐	or	fund‐specific	controls	does	not	alter	this	picture.	These	results	stand	in	

sharp	 contrast	 to	 those	 obtained	 in	 Huang	 et	 al.	 (2016)	 and	 therefore	 suggest	 that	 the	

Edmans	et	al.	(2012)	approach	is	successful	in	mitigating	the	selection	problem	induced	by	

mutual	fund	managers’	choice	of	which	stocks	to	sell.		

Finally,	we	note	that	we	do	not	find	any	differences	in	return	spillover	effects	when	we	sort	

peer	stocks	based	on	the	abnormal	short	interest	for	their	associated	fire	sale	stocks	(results	

are	available	upon	request).	This	is	of	course	very	much	expected	given	that	our	results	here	

do	not	show	any	differences	for	fire	sale	stocks	with	low	and	high	abnormal	short	interest.		
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Figure B.3: Event-time Returns for Fire Sales with Low and High Short Interest 
This figure shows returns for fire sale firms with low and high abnormal short interest in event-time (where 0 is the 
quarter of the fire sale). These graphs are based on the cumulated coefficient estimates of the fire sale dummies shown 
in Table B.3, column 1.  
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Table B.3: Fire Sale Effect for Low and High Abnormal Short Interest Stocks 
This table reports results from estimating equation (1) at the stock-quarter level. The dependent variable is the quarterly return. The main independent variables are two 
groups of FS dummies flagging fire sale events for stocks with low and high abnormal short interest, where the abnormal short interest is defined as in Huang et al. 
(2016); see description above. All regressions include separate event-time dummies from t=-16 to t=16 for both groups of fire sales; for brevity we only show the 
coefficients for t=0. Firm and quarter fixed effects are included in all specifications. In specification 2, additional firm-level controls are included (logarithm of total 
assets, logarithm of leverage, investment grade dummy, speculative grade dummy, market-to-book ratio, return on assets, logarithm of number of analysts). In 
specification 3, ownership controls are included (mutual fund ownership, institutional ownership). In specification 4, mutual fund flow controls are included (separately 
for fire sale funds and others). In specification 5, ownership and flow controls are included. In specification 6, firm-level, ownership and flow controls are included. 
All variables are defined in Appendix A. Standard errors are double-clustered at the firm and quarter level. T-statistics are reported below coefficient estimates in 
parentheses. At the bottom of the table, we report the sum of the FS event-time dummy coefficients for windows [1, 4] and [1, 8], respectively, together with the 
corresponding t-statistic for the cumulated return reversal. *, **, *** indicate statistical significance at the 10%, 5%, and 1% levels. 
 
 (1)  (2)  (3)  (4)  (5)  (6) 
 Abn Short Interest  Abn Short Interest  Abn Short Interest  Abn Short Interest  Abn Short Interest  Abn Short Interest 
Event-time Low High  Low High  Low High  Low High  Low High  Low High 
t = 0 -0.078*** -0.067***  -0.076*** -0.067***  -0.075*** -0.061***  -0.074*** -0.063***  -0.071*** -0.058***  -0.071*** -0.061*** 
 (-6.89) (-8.68)  (-6.75) (-8.72)  (-6.75) (-7.93)  (-7.28) (-8.89)  (-7.18) (-8.15)  (-7.18) (-8.70) 
N 352,250  339,481  352,250  325,224  325,224  314,711 
adj. R2 0.677  0.689  0.679  0.663  0.666  0.677 
Firm & quart. f.e. Yes  Yes  Yes  Yes  Yes  Yes 
Firm controls No  Yes  No  No  No  Yes 
Own. controls No  No  Yes  No  Yes  Yes 
Flow controls No  No  No  Yes  Yes  Yes 
Reversal [1, 4] 0.029 0.042***  0.028 0.035***  0.034 0.055***  0.031 0.042***  0.036 0.055***  0.030 0.040*** 
 (1.26) (3.92)  (1.24) (3.42)  (1.46) (5.21)  (1.38) (3.96)  (1.58) (5.19)  (1.42) (3.96) 
Reversal [1, 8] 0.047 0.046***  0.042 0.032**  0.052* 0.066***  0.048 0.046***  0.054* 0.065***  0.045 0.041*** 
 (1.52) (3.34)  (1.44) (2.42) (1.69) (4.71) (1.60) (3.34) (1.78) (4.62) (1.60) (3.05) 
 


